Side Navigation

X

C079 — Short-Term Occupant Numbering Prediction via Machine Learning Approaches

Click here to purchase
Occupancy behavior plays an essential part in smart building operation. Developing an appropriate algorithm to predict occupancy information will bring a better control for Heating Ventilation & Air Conditioning system, and indoor health. However, due to the strong stochasticity of occupancy behavior, it is much harder to predict occupant count than occupant state. There is a lot of studies working on occupancy presence or arrive-departure time prediction, only a few researchers focus on the occupant count prediction. The lack of occupant count prediction limits the development of demand-controlled ventilation. In this study, 1) A set of ground truth data was collected via state-of-the-art people counting sensor. 2) A flatten preprocessing method was used to smooth the collected data of occupant number. 3) Seven different models (ARMA_ANN model, RNN model, LSTM model, Nonhomogeneous Markov with change point detection model, XGBoost model, Random Forest model and ANN_Range model) were used to predict the room occupant count from 15 minutes to 24 hours ahead. We found that XGBoost model, Random Forest model and ARMA_ANN model have similar performance and they all outperforms than the other models by a 3% to 13% mismatch rate reduction and reduce the computation time. Each model could predict the number of occupants with 85% accuracy with one-person offset and the accuracy for 15 minutes ahead prediction could reach 95% with one-person offset. LSTM model works slightly better than RNN model and both of them had a smoother prediction. None of these seven models could track the abrupt changes.

Product Details

Published:
2023
Number of Pages:
9
Units of Measure:
Dual
File Size:
1 file , 2.2 MB
Product Code(s):
D-AT-23-C079
Note:
This product is unavailable in Russia, Belarus

You May Also Like